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The Magnus or Robins effect on rotating spheres 

By H. M. BARKLA AND L. J. AUCHTERLONIET 
University of S t  Andrews 

(Received 7 August 1969 and in revised form 16 November 1970) 

Robins showed in 1742 that a transverse aerodynamic force on a rotating sphere 
could be detected by suspending it as a pendulum. Differences of periodic time in 
conical pendulum motion with spin and orbit parallel and opposed have been 
found to give a reasonably accurate measure of the lift coefficient, and the results 
shown extend knowledge of the effect down to a Reynolds number of 2 x lo3 and 
up to a ratio of 12 between the peripheral and translational velocities. 

1. Introduction 
Robins must be accounted one of the founders of aerodynamics in virtue of his 

measurements of air resistance. The ballistic pendulum and the whirling arm 
were his own inventions, and these he employed with great skill and care in two 
complementary investigations: with the first he measured the loss of ‘ celerity’ 
of musket-balls at transonic speeds up to a Mach number of 1.5, recognizing 
clearly the existence of a disproportionate rise in drag a t  speeds in the region 
of the velocity of sound; with the second device he made direct observations on 
the resistanae of larger spheres at speeds of 10-40 ft s-l, confirming, for this 
range, the proportionality between resistance and the square of the velocity, as 
enunciated by Newton (1687). In  addition, Robins made several remarkable 
observations on the drag of other bodies, including the first indication of the 
effect of aspect ratio. 

Finally, he established clear priority in experimental demonstration of the 
phenomenon commonly known as the Magnus effect. The experiments carried 
out by Magnus (1853), more than a century after Robins’s work, were successful 
only with rotating cylinders, and were purely qualitative; no measurements or 
even estimates are recorded for the velocities and forces. The equivalent effect 
with spheres was certainly known nearly two centuries earlier. Newton (1671/2) 
had noted how the flight of a tennis ball was affected by spin, and had given an 
explanation; the motions conspiring to excite a greater reluctancy and reaction 
implied a greater pressure on that side of the ball which was moving forward 
faster. 

Euler’s opposition to the idea is surprising. Even while professing admiration 
for Daniel Bernoulli’s Hydrodynamica, to which he considered that Robins paid 
insufficient respect, Euler (1777) rejected the possibility of an aerodynamic force 
resulting from spin. ‘The want of a perfect roundness’ (p. 310) he believed to be 
the only cause of the deflexion of shot. 
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The association of the effect with the name of Magnus was confirmed by the 
attribution to him by Rayleigh (1877) of ‘the true explanation’. Rayleigh never- 
theless noted the ‘weak step’ of the argument, namely thaC the pressure was 
greatest on the side where the velocity was least, which could be justified for 
frictionless fluids only, whereas friction is ‘the immediate cause of the whirlpool 
motion’. Even more questionable, though not apparently challenged, was the 
supposed experimental demonstration by Magnus that the pressures were not 
equal on the two sides of the cylinder; the observed movement of quite large 
vanes was proof only that pressure differences existed across the vanes in con- 
sequence of a special and quite different condition of flow resulting from the 
presence of the vanes. 

Since Magnus was unsuacessful in his experiments with spheres, merely guessing 
that a similar force was generated, it would be only justice if the case of the 
sphere were to be renamed the Robins effect. The extension of Robins’s work on 
rotating spheres is the main subject of this paper. 
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Inches 
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FIGURE 1. The first set of observations by Robins. Five shots being fired in sIightly 
different directions from the same notch, the horizontal distances of the last four tracks are 
shown relative to the first, as measured on three planes. Screens a t  50 ft and 100 ft were of 
‘exceeding thin paper’, and the third plane was a wall at 300 ft. 

2. Robins’s observations on the effect of spin 
Tracing the trajectories of musket-balls on two thin paper screens and a -wall, 

Robins (1805, p. 210) found unmistakable evidence of curvature in either direc- 
tion in the horizontal plane; his belief that this was due to random components of 
spin about a vertical axis was confirmed by deliberately imparting spin about a 
known axis by means of a ‘crooked piece ’; the barrel being bent t o  the Ieft, the 
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ball was forced into contact with the right side of the bore, and the shots were 
curved to the right. 

The absolute alignment of the lines of reference on the three planes was not 
considered essential for establishing the principle in the presence of other ob- 
servers. The mark of the first shot being taken as the datum on each screen, 
deflexions of subsequent shots were measured from these, and the recorded sets of 
differences are plotted in figures 1 and 2; for the second group a more loosely 
fitting ball was used. The evidence is insufficient for statistical treatment, but 
the average curvature of the five shots in the second group is zero, if the first shot 
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FIGURE 2. The second of the two sets of observations. If the mean curvature of these five 
shots from the straight barrel is assumed to  be zero, then, taking each in turn as the 
reference shot used by Robins, the curvature of the 'crooked-piece' shot has the following 
values: 6.1, 6.3, 10.5, 3.3 or 4.3 x 

of the group is taken to have a curvature to the right of 0.2 x lOPft-1. Although 
the behaviour of the later shots with a barrel curved 3 or 4" to the left evidently 
satisfied the observers, only one is recorded. Robins writes: " . . .notwithstanding 
the bend of the piece to the left, the bullet itself might be expected to incurvate 
towards the right; and this, upon trial, did most remarkably happen". The one 
recorded shot had a curvature to the right of 6-3 x ft-l relative to one of the 
five shots of figure 2, unfortunately not specified. Unless one makes the unlikely 
assumption that the average curvature of the five shots was really not zero but 
markedly to the left, 6hen the crooked-piece shot must have been more curved 
to the right than even the most unfavourable possible reference shot was 
curved to the left. The five possible values quoted in the caption to figure 2 give 
the absolute curvature of the crooked-piece shot on the assumption that the 
average curvature of the five straight-barrel shots was zero. 

A rough estimate can be made of the spin imparted to the lead ball, assuming 
it to be travelling at the full muzzle-velocity U before reaching the bend; as 
Robins bent only the last 3 or 4 in. of the barrel, this is reasonable. If the ball has 
mass m and radius a, and if the radius of curvature of the barrel is R, friction, with 

ft-l. 
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a coefficient p, gives an accelerating moment pmU2a/R. The angular velocity 
acquired while the barrel bends through an angle B is 

moment x time (punzU2a/R)(RB/U) 5pUB 
moment of inertia ;ma2 2 a '  

Hence, whether the curvature of the barrel is uniform or not, the ratio of peri- 
pheral velocity to translational velocity is given by 

- - - 

v/u = +pB. 

Taking the higher figure of 4" for the bend, and a value p = 0-2, this gives 
V /  U = 0.035, which will be seen to be consistent with a curvature of 6 x 10-5 ft-1, 
as far as available aerodynamic evidence allows. 

No direct experiments are known to have been made on the 'lift ' of rotating 
spheres at speeds approaching those of musket-balls. The measurements of 
Maccoll (1928) on a smooth sphere over a range of V / U  up to 7 were made with 
values of U up to 34fts-l. These are consistent with observations by Davies 
(1949) using rough as well as smooth golf balls at  U = 105 f t  s-l. Both experi- 
menters show negative lift - that is, a reversed Magnus or Robins force - for 
smooth balls at values of V / U  up to about 4. This includes, therefore, all the spins 
imparted by the straight or curved barrels in Robins's experiments, but if the 
explanation offered by Davies for this reversal of sign of the lift is eorrect, then, 
at  the higher velocities of a musket-ball, rough and smooth balls would be ex- 
pected to experience similar forces. 

Davies argued from the known difference, for smooth non-rotating spheres, 
of the pressure distribution at Reynolds numbers above and below a critical 
value of about 3 x 105. The turbulent boundary layer following the surface further 
round a t  the higher speeds, and breakaway occurring before maximum width at 
the lower speeds, the region of reduced pressure is developed to more nearly that 
of potential flow when the Reynolds number is above the critical value. If we 
6hen consider a smooth baIl in an air stream such that the ReynoIds number 
would be close to the critical value in the absence of spin, and if we further suppose 
the ball to have angular velocity, the flow on the side on which the surface is 
moving against the stream corresponds to a Reynolds number above the critical 
value, while that on the opposite side has the characteristics of flow at less than 
the critical value. The reduction of pressure on the side moving against the 
stream may then be sufficiently developed to outweigh the less perfect develop- 
ment of the normally dominant low-pressure system. For moderate speeds of 
rotation a reversal of the usual aerodynamic force might therefore be expected. 

Davies used only one wind speed, and the overall Reynolds number was 
0.9 x 105. The observations of Maccoll show a smaller negative lift for 

R = 1.1 x 105 than for R = 0.9 x 105. 

The Reynolds number for musket-balls near the beginning of their flight, namely 
about 5 x 105, may be presumed to be well beyond the limited range in which 
smooth-sphere lift-reversal occurs. If, therefore, we use Davies's curve for the 
lateral force on a rough ball, and take a mean lift coefficient of C, = 0.080, 
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corresponding to V / U  = 0.035, we find that the trajectory should have a mean 
curvature of 5.6 x 10-5ft-1. (A lateral force proportional to U2, as is implied by a 
constant C,, gives a circular path with a radius independent of velocity. U will, 
of course, fall by 30 % or 40 % in 300 ft, but V decreases also, so that the change in 
C, need not be great. Further refinement of the calculation is not justified here.) 

In  support of his belief in an aerodynamic force as the explanation of the 
deflexions of musket-balls, Robins reports another experimenb with very much 
lower velocities. A wooden ball of 4iin. diameter on a twisted double string of 8 
or 9ft length was set in motion as a pendulum. The subsequent rotation of the 
ball was accompanied by a rotation of the plane of the swing, in the same direc- 
tion as the rotation of the ball, and this continued while the string was twisting 
again, and the rotational speed decreasing. The only quantitative observation 
recorded by Robins is that the plane of the swing could change direction by as 
much as 90’. He regarded this as “incontestable proof that if any bullet, besides 
its progressive motion, hath a whirl around its axis; it will be deflected in the 
manner here described”. In  this he was not quite correct. The purely gyroscopic 
action of the ball on its string makes a contribution to the precession of the swing 
whioh is of comparable magnitude to that of the aerodynamic force. Nevertheless 
the experiment is of interest in itself, and the complementary notion of the 
conical pendulum having a period dependent on its ‘whirl’ will be seen to give 
useful observations. 

3. The continuation of Robins’s experiments 
A teaching-laboratory project was developed from Robins’s spinning sphere 

pendulum. A ball with a slightly roughened surface, having a mass of 100 g and 
diameter 6-4cm, was suspended by a nylon thread of varying length from the 
spindle of an electric motor, and two types of observation were made. 

The precession of a simple pendulum, as observed by Robins, was treated as a 
case of the rotation of the axes in an elliptical orbit. Since the flow pattern around 
the sphere is continually changing in such orbits, these measurements do not 
permit the derivations of aerodynamic information of any value. The rate of 
precession depends markedly on the eccentricity of the ellipse, and this is 
attributable in part to the gyroscopic effect; as no theoretical treatment of this 
effect is known to be in print, the results are only reported briefly. 

The more nearly the orbits approach to a pure circle, the more nearly the flow 
approaches a steady state, and, while the concept of precession of axes becomes 
meaningless, the change of period of the conical pendulum due to spin suggested 
itself as 8 measure of the aerodynamic lift. This idea proved t o  be moderately 
profitable, and the coefficients derived by this means extend to a higher ratio of 
peripheral to translational velocity than any previously reported. 

3.1. Precession of elliptical orbits 

Photographic recording of the orbits was facilitated by reflexions from a very 
small ball of crumpled aluminium foil at the junction of ball and thread, ball and 
background being dark. The shutter was opened for every fifth or tenth orbit. 
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Figure 3 (plate 1) shows a typical record. The eccentricity of the orbits changed 
slowly with time in a somewhat irregular manner. The rate of precession de- 
pended only slightly on the amplitude of the orbits; a value of 0-15 rad was 
chosen as a representative angle of the major half-axes, and the eight values in 
figure 4 correspond to that amplitude. The ratio of half-axes bla is defined as 
positive for rotation in the orbit, which is in the same sense as the spin of the ball. 
Whereas only two rates of spin were examined over a range of eccentricities, a 
wider range of spin rates was used for the case of linear swings (b/a = 0) (figure 5). 
The length of the pendulum, which had initially been 190 em, was increased to 
840 cm for the subsequent investigations, so reducing the relative magnitude of 
the corrections as far as the height of the building permitted. 

-0.6 -0.4 -0.2 0 0-2 04 0.6 0.8 

Minor axis b 
Majoraxis (-1 a 

FIGURE 4. Rate of precession of the axes in relation to the eccentricity of the elliptical cone 
pendulum. Rate of rotation of sphere: 0, 1440 rev/min; + , 1040 rev/min. 

3.2. Periodic times of the conical pendulum 

If the axis of spin of the sphere is assumed to be aligned with the string, and the 
aerodynamic lift L is taken to be normal to the string (figure 6), the ratio T/ro of 
the periodic time with spin to that without spin can be shown to be 
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FIGURE 5. Rate of precession of straight pendulum swings, BE a function of 
the rate of spin of the ball. 

FIGURE 6 FIGURE 7 

FIGURE 6. Conical pendulum with spinning spherical mass of negligible moment of inertia; 
the axis of spin is aligned with the suspension. 

FIGURE 7. Conical pendulum with sphere of finite moment of inertia; the axis of rotation of 
the sphere assumes such an angle to the suspension as to cause a precession having a period 
equal to t,hat of the pendulum. 
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To a good approximation the increase of period (&), = r - T ~ ,  due to the aero- 
dynamic force in the presence of spin, may then be expressed as 

Defining the coefficient of lift in terms of the projected area S of the ball, and the 

(3) 
density p of the air, 

Now the translational velocity U in the circular orbit of angle 8 is [gl  sin 8 tan 818 
when L is negligible, and using this in (3) and ( 2 )  the coefficient of lift can be 
expressed as 

(4) 

L = *pcLsu2. 

4m (8% c, = 
pSltan0 r0 

The period is longer, and (&), positive, when the angular velocities of spin and 
orbit are opposed. Under the same condition the period would also exhibit a 
positive increment ( 8 ~ ) ~  due to gyroscopic action in the absence of any aero- 
dynamic force. We will retain 8 as the inclination to the vertical of the line from 
the centre of the ball to the point of suspension; then the angle of the string to the 
vertical is approximately 8 - (a/@ - a)}$, where $ is the angle between the axis 
of spin and the string (figure 7). The period without aerodynamic lift is related to 

7 0  by 7 
(5 )  

and the increment  ST)^ due to gyroscopic effect is then given approximately by 

l a  
r0 sin20 I 6 

(8% - _ _ _ _ -  

The angle of tilt of the ball in the steady state is such that the tension of the string, 
acting at distance a sin q5 from the centre of gravity of the ball, causes precession 
of the spin axis a t  the rotation rate of the conical pendulum. All the observations 
recorded here were made with 8 < 5" and q5 < lo, and the ratio all was 3.6 x 10-3, 
so that the relation between moment, angular velocity of precession and angular 
momentum is adequately represented by 

where w is the angular velocity of the ball; the ball is assumed to be a homogeneous 
sphere. This was solved graphically to give the values of q5 required in (6)' and the 
gyroscopic contribution (87)g to the observed period was thus calculated. 

At latitude A the earth's rotation increases the period of a conical pendulum 
with anticlockwise motion (looking down) by 

(8)  (&), = 1-16 x x r2sinA. 

' ( 8 ~ ) ~  is simply reversed by reversal of the orbit, and (87), is reversed by reversal 
of either spin or orbit; the positive and negative vaIues of ( & T ) ~ ,  however, differ 
appreciably; (wg is the mean of the two. 
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Since (&-)*, (~377)~ and (&), are all very small compared to T,,, it is justifiable to 
regard the observed & as the sum of these, each being represented by one of the 
separate formulae (2), (6) and (8). 

The corrections of the period for damping are negligible. In  the most extreme 
case observed the damping was 1.4 yo of critical, thus increasing the period 5.8 s by 
0.6 ms. The mean damping was about + yo of critical, increasing the period by less 
than 0.1 ms, so that any differences, due to different damping for the two direc- 
tions of rotation, were smaller still. 
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FIGURE 8. The relation of the coefficient of lift of a sphere to its relative rate of rotation, 
given by the periods of a conical pendulum. The broken lines are the results of Maccoll, who 
used a smooth ball of diameter 6 in. ; each line is for one velocity of translation, indicated 
in f t  s-l. Rate of rotation of sphere: 0, 1400 rev/min; 0, 1200 rev/min; A, 1000 rev/min; 
x , 800 revlmin; + , 600 rev/min; '(7, 400 rev/min. 

Observations of the period were all made with the ball rotating in one direc- 
tion (clockwise, looking down), the orbital motion being reversed. Every second 
orbit was timed electronically, while the size of the orbiti was observed through a 
telescope close to the point of suspension: circles subtending radial angles of 
0.04, 0-05, 0.06 and 0.08 rad had been marked on a graticule. As the orbits 
frequently departed noticeably from true circles, judging when they matched 
the circles of the graticule was a major source of error. Individual periods 
deviated from the smoothed curve by up to 3 ms, but the smoothed figures are 
good to about 1 ms. Differences at any given cone angle between the smoothed 
periodic times with opposite orbital motions, double the Gof the above equations, 
ranged from 20 to 40ms. The correction term [(&-)g+ (w,] amounted to between 
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4 and 12 yo of the observed figure for &, and the derived values for the lift co- 
efficient C, have a mean accuracy of 5 yo. Translational Reynolds numbers lay in 
the range 1500-3000. 

The plot in figure 8 of C, against V /  U, the ratio of peripheral and translational 
speeds, shows a trend to higher lift coefficients a t  lower values of either V or U ;  
lines of constant V are, however, better defined than are those of constant 77. 

' 0  

X 
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5 10 
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FIGURE 9. Drag coefficients derived from the rate of decay of conical orbits. Symbols as in 
figure 8 with addition 0 for zero rate of rotation. 

The drag coefficients of figure 9 exhibit no corresponding separation. These are 
calculated on the assumption that the resistance of the suspending filament is 
negligible in comparison with that of the sphere. The radius r of the orbit being 
recorded as a function of the number N of the cycle, the drag coefficient can then 
be shown to be given by the relation 

The nylon filament had a length of 837 cm and a diameter of 0*35mm, so that 
its total projected area was comparable to that of the sphere. Although no 
attempt has been made to evaluate its effect in detail, the added resistance 
accounts roughly for the drag shown for the sphere at  zero spin exceeding the 
accepted figure by some 30 yo. 

In common with whirling-arm experiments in general, these measurements 
suffer from the defect that the ball is not moving into still air. The smallest orbit 
used had a diameter eleven times the ball diameter, and the period, the longest 
possible, was still under 6 s. 
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4. Conclusion 
The coefficients of lift for rotating spheres at Reynolds numbers between 1500 

and 3000, calculated t o  an accuracy of 5 yo from differences in the periods of a 
conical pendulum, show noticeable departures from earlier measurements by 
Maccoll a t  Reynolds numbers of lo5. Whereas Maccoll’s lift coefficients level off at  
higher rates of spin, the new observations rise less rapidly a t  first, with increasing 
spin, but continue to rise to higher values, teiiding towards proportionality to the 
rate of spin. Though of lower absolute accuracy, the drag coefficients exhibit an 
appreciable difference from those of Maccoll, in that they fall slightly with 
increasing spin. 

Dr A. D. D. Craik gave valuable advice throughout the work. The later obser- 
vations of the conical pendulum were made with the assistance of Mr M.A. 
Barkla. 
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FIGURE 3. A typical record of the elliptical pendulum motion. Every fifth orbit was 
photographed. The ball was spinning a t  1440 rcv/min and the greatest amplitude shown is 
about l / 6  radian. 
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